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Configurational entropy and collective modes in normal and supercooled liquids

U. Zürcher* and T. Keyes†

Department of Chemistry, Boston University, Boston, Massachusetts 02215
~Received 4 February 1998; revised manuscript received 19 April 1999!

Soft vibrational modes have been used to explain anomalous thermal properties of glasses above 1 K. The
soft-potential model consists of a collection of double-well potentials that are distorted by a linear term
representing local stress in the liquid. Double-well modes contribute to the configurational entropy of the
system. Based on the Adam-Gibbs theory of entropically driven relaxation in liquids, we show that the
presence of stress drives the transition from Arrhenius to Zwanzig-Ba¨ssler temperature dependence of relax-
ation times. At some temperature below the glass transition, the energy scale is dominated by local stress, and
soft modes are described by single wells only. It follows that the configurational entropy vanishes, in agree-
ment with the ‘‘Kauzmann paradox.’’ We discuss a possible connection between soft vibrational modes and
ultrafast processes that dominate liquid dynamics near the glass transition.@S1063-651X~99!12108-1#

PACS number~s!: 64.70.Pf, 05.70.2a, 63.50.1x
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I. INTRODUCTION

The glass transition remains one of the challenges
chemical physics despite enormous advances in our un
standing during the past two decades. The basic phen
enology of the transition is well established. As the tempe
ture of a supercooled liquid is lowered even further, t
specific heat~or heat capacity! drops rapidly without appar
ent changes in the structure~such as the nearest neighb
distribution! @1#. This decrease indicates the lack of kine
accessibility of liquidlike degrees of freedom, and thus i
consequence of the transition between ergodic and no
godic behavior@2#.

The ergodic behavior in supercooled liquids and glas
has been studied in Ref.@3# using a molecular dynamic
~MD! simulation. The authors define an energy metric wh
is zero for ergodic states and is nonzero when ergodicit
broken. They point out that this behavior is not surprisi
since symmetry breaking is already evident from the nonz
value of the zero-frequency shear modulus in glasses. An
son outlined a theory in which elementary excitations ar
consequence of the symmetry-broken state of the system@4#.
Palmer proposed a two-level statistical scheme for trea
broken ergodicity systems@5#. The number of such compo
nents is exponentially large (;eaN) @6#.

Below 1 K the specific heat and the thermal conductiv
have a linear and quadratic temperature dependence, re
tively, i.e., C(T);T and k(T);T2. Within the Debye
model of crystal vibrations, the specific heat vanishes m
rapidly asT˜0, C(T);T3. Thus, the linear specific heat i
glasses reflects additional degrees of freedom associated
disorder. Anderson, Halperin, and Varma@7# and Phillips@8#
independently proposed that these states can be modele
two-level systems~TLS! characterized by a continuous di
tribution of energy differencesnTLS(De/eTLS* ), whereeTLS* is
some characteristic energy for TLS. The specific heat is t
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given by the variance of the energy differences,

C5E
0

`

nTLS~De/eTLS* !~De/T!2

3exp~2De/T!/@11exp~2De/T!#2 dDe.

Using x5De/T, we find

C5T*0
`nTLS~xT/eTLS* !x2e2x/~11e2x!2dx.

For low temperatures,T,eTLS* andnTLS(xT/eTLS* ) is slowly
varying. Assuming a flat distribution near the originDe
50, a linear temperature dependence follows,C;nTLS(De
.0)T.

At higher temperatures, the thermal conductivity reach
a plateau and the specific heat rises faster thanT3 such that
C/T3 has a peak. Thermal properties of glasses over
extended temperature range have been described by th
called soft-potential model, which is an extension of the T
model for glasses. Buchenau and co-workers have sh
that two-level systems and low-energy vibrational states
be explained by the same distribution of localized modes@9#.
Soft modes have been used to describe the excitation s
trum of glasses in the rangen;10 to 100 GHz that has
anharmonic contributions from relaxation and quasiharmo
vibrational excitations~‘‘boson peak’’! @10#. It has been es-
timated that up to 100 particles participate in a lo
frequency mode,Ns;102100. A detailed comparison of th
predictions of the soft-potential model~SPM! with experi-
ments has led to conflicting conclusions. While Sokolov a
co-workers@11# found that the SPM does not explain th
temperature dependence of the specific heat
Ca0.4K0.6~NO3!1.4 nearT.1 K, Lundqvistet al. found excel-
lent agreement for other typical glass formers such as or
terphenyl~OTP! and glycerol@12#.

A typical glass temperature is about 100 K, while anom
lous thermal properties of glasses are observed below 1
Near Tg , the heat capacity of supercooled liquids drops
crystallike values. This drop reflects the loss of configurat
space accessible to the system in the glassy phase.

ic
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2066 PRE 60U. ZÜRCHER AND T. KEYES
consequence, the configurational entropy is much lower f
glass than for a liquid. Kauzmann observed that theextrapo-
lated values of liquid entropies vanish at some temperat
below the glass transition,TK,Tg @13#.

This behavior suggests that thermally activated proce
in the glassy phase are entropically driven@14#; the glass
transition is regarded as an equilibrium second-order ph
transition that is hidden by slow kinetics@15#. Gibbs and
co-workers argued that particles in a liquid organize inco-
operatively rearranging regionsand determined the tem
perature dependence of the size of these regions. The r
ation time follows

logt;
1

ST
, ~1!

whereS is the specific entropy of the macroscopic sam
andT is the temperature~in units withkB51!. In this paper,
we use Eq.~1! to describe the temperature dependence
relaxation times.

The temperature dependence of logt is the basis of the
classification of liquids into strong and fragile@16#. In a
strong liquid, the relaxation time shows Arrhenius behav
logt }1/T, all the way down toTg @defined by t(Tg)
51013P#, while a fragile liquid exhibits a transition to
stronger-than-Arrhenius dependence beforeTg is reached.
The drop in the specific heatDC5C(liquid)2C(glass) cor-
relates with the degree of fragility;DC is large for fragile
liquids, while it is small, or even negligible, for strong liq
uids.

We show in this paper that super-Arrhenius behavior
relaxation times is consistent with a model of supercoo
liquids in which localized, collective modes coexist wi
phonons. Similar to TLS modes for glasses below 1 K, s
soft modes are intrinsic to the disordered state of the liqu
Thus, soft modes dominate the configurational entropy
liquids above the Kauzmann temperature, while the resid
entropy belowTK originates mainly from TLS modes.

The soft-potential model is a collection of energy profil
along many-body coordinates,V(x)5W@D1x2D2x21x4#.
The profiles are double and single wells for small and la
values of the asymmetry,D1 , respectively. Buchenau argue
that the asymmetry describes local~shear! stress in the liquid
and proposed that its distribution is independent of temp
ture @17#. Since only double wells contribute to the config
rational entropy, we expect local stress to govern much
low-temperature properties of liquids.

Well above the glass temperature,T@Tg , the system can
surmount large barriers, local stress is only a small pertu
tion to the symmetric potential,V(x).V0(x)5W@2D2x2

1x4#, and soft modes do not contribute to the specific he
Since we haveC5T(]S/]T), the entropy does not depen
on temperature and Eq.~1! gives Arrhenius behavior. The
Adam-Gibbs theory is generally used to describe sup
Arrhenius behavior, but our interest in the Arrhenius regi
is to demonstrate the crossover from super-Arrhenius
Arrhenius temperature dependence only, for which
Adam-Gibbs ansatz should be applicable.

As the temperature is lowered,T*Tg , the system sur-
mounts small barriers only and the asymmetry between
minima of the wells can no longer be neglected. As a c
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sequence, soft modes contribute to the specific heat. We
troduce a distribution for asymmetry energies of soft mod
nSPM(De/eSPM* ), whereeSPM* is the characteristic energy fo
soft modes. IfeSPM* is much larger than the characterist
energy for TLS,eSPM* @eTLS* , then a system at temperatureT
can be in the high-temperature limit of the TLS mod
T/eTLS* .1, and still remain in the low-temperature limit fo
soft modes,T/eSPM* ,1.

For such temperatures,T,eSPM* , we repeat our argu-
ments from above to find that the configurational entro
vanishes linearly with temperature,S(T);nSPM(De.0)T
@18#. Inserted into Eq.~1!, we recover the Zwanzig-Ba¨ssler
temperature dependence of relaxation times@19,20#,

logt;
1

nSPM~De.0!T2 . ~2!

The linear temperature dependence of the configurationa
tropy for T,Tg is unphysical, however, and should only b
considered as an extrapolation. Indeed, this behavior
been derived assuming thatnSPM(De/eSPM* ) is finite as
De˜0. For T,Tg , the energy scale is dominated by loc
stress so that the linear term in the soft-potential mode
large, and soft modes are represented by single- and
by double-well potentials. It follows that the soft-mode co
tribution to the configurational entropy drops below the li
ear extrapolation,S(T),nSPM(De.0)T, and then vanishes
at some temperature below the glass temperature,TK,Tg ,
in agreement with the ‘‘Kauzmann paradox’’@13#. A sche-
matic sketch of the temperature dependence ofS is depicted
in Fig. 1.

In an earlier paper, we calculated the density of sta
~DOS! of unstable frequencies within the soft-potent
model @21#. We showed that the DOS depends on the f
quency and temperature via the combinationn2/T only, i.e.,
logGu(n

2);2n2/T for T@Tg and logGu(n
2);2n4/T2 for T

*Tg . A frequency cutoff for double-well modes give
Arrhenius- and Zwanzig-Ba¨ssler dependence of the diffusio
constant for high and low temperatures, respectively. Ho
ever, in Ref.@21#, no connection between unstable mod
and thermodynamic quantities has been made.

Liquid dynamics may be formulated in terms of the m
tion of the system among the basins of theN-body potential
energy via the ‘‘reaction coordinates’’ connecting them. W
have suggested@22# that unstable modes are signatures of
reaction coordinates, and thus related to barrier crossing
diffusion. While that association must be made carefully, a
the reaction coordinates are more complex than, e.g., sim
parabolic barriers, the diffusion constant has been predic
very accurately from formulas based on the unstable mo
Here we additionally propose that unstable modes reflect
number of local minima accessible to the liquid in a neig
borhood of a typical configuration. This is consistent w
the association of unstable modes and reaction coordina
since a configuration ‘‘close’’ to many basins most likely lie
on several reaction coordinates.

If slow dynamics is governed by the configurational e
tropy from one point of view and by unstable modes fro
another, there should be a connection between the two. If
anomalous properties of liquids at low temperatures are
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to soft modes, then they also determineS. In the following
we estimate afrequencyandtemperaturedependent configu
rational entropyS(n;T) from the contribution of soft mode
with frequencyn. We then show that the unstable DO
Gu(n), found in our prior calculations and in simulation
follows from an-dependent extension of Eq.~1! if Gu(n) is
identified ast~n!. Thus, the connection between the unsta
modes and slow relaxation, and our prior calculation of
crossover from Arrhenius to Zwanzig-Ba¨ssler behavior, is
greatly extended and clarified. In addition, the soft-poten
model gives a complete description of the characteristic
havior of the configurational entropy in glass-forming li
uids, cf. Fig. 1, in which the temperature dependence is g
erned by local stress.

II. SOFT VIBRATIONAL MODES IN LIQUIDS

Since the configurational entropy reflects the topology
the potential energy surface,S can be computed in the limi
T˜`. In particular, we use a definition ofS that is closely
related to the density of local minima. This density plays
important role in the ‘‘energy landscape’’ picture of gla
formation @16#. For an arbitrary liquid configurationRW 0 , we
find the nearest local minimum of the potential energy s
face,RW min , by displacing the coordinates of the particles p
ticipating in a low-frequency vibrational mode@6#. We ex-
pand the potential energy aroundRW 0 , DF5F(RW )2F(RW 0)
.2FW •(RW 2RW 0)1 1

2 (RW 2RW 0)•K•(RW 2RW 0). SinceNs does not
scale with the total number of particles, the potential diff
ence is given bŷDF&;W, whereW is an energy scale fo
particle interactions. Hence, the average distance to the n
est minimum DR5^uRW 02RW minu& follows (DR)2;W/V2,
where V is an upper frequency cutoff for soft vibration
modes,̂ K &;V2I . We denote byDx0 the separation of the
minima of two-level systems. Because the configuratio
entropy is the statistical quantity related to the number
microscopicstates corresponding to the samemacroscopic
state, we have in harmonic approximationS;(DR/Dx0)2.
We show below that the entropy is well defined in the lim
W˜0.

FIG. 1. Configurational entropyS vs temperatureT ~schemati-
cally!. The extrapolation ofS vanishes at the Kauzmann temper
ture TK and Tg is the glass temperature. Also indicated are
linear behaviors discussed in the text.
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At temperatures well above the glass transition, we exp
that relaxation times obey Arrhenius behavior, logt
;const/T, or S(T)5const, for T@Tg . It follows that the
specific heat vanishes,C50, and hence soft modes are d
scribed bysymmetricdouble wells,

V0~x!5W@2D2x21x4#. ~3!

Here, the parameterD2 is a random variable for which we
assume a uniform distribution,

p2~D2!5const, for 0,D2,
V2

4W
. ~4!

The potential is symmetricV0(x)5V0(2x), with two
minima located atx0

656AD2/2. The minima are separate
by the potential barrierDV05WD2

2/4. The barrier curvature
is the negative second derivative of the potential,n2

52d2V0 /dx25W@2D2212x2#. Sincex.0 near the top of
the barrier, barrier frequencies characterize soft modesn2

.2WD2 . The separation of potential minima,Dx05x0
1

2x0
2 , thus followsDx05n/AW. We thus find that the con

figurational entropy depends on the barrier frequency of
soft mode,

S~n!;
W2

V2n2 , T@Tg . ~5!

At low temperatures, the supercooled liquid suppo
long-range stress fields@23#. Long-range stress fields induc
frustration so that the supercooled liquid is the high-entro
phase of the system@24#. In this phase, the energy landsca
has high density of local mimina. The characteristic ene
scale of collective modes is now proportional to the displa
ment,dF.WD1DR8. SettingdF.W, the typical deviation
follows (DR8)2;1/̂ D1

2&. In the presence of stress, the m
jority of two-level systems are asymmetric double wells. B
cause the number of particles participating in a soft mo
does not change in the presence of stress, the potentia
ferenceDF8;V2(DR8)2 gives an estimate of the ratio o
the number of asymmetric TLS to the number of symme
TLS, k;^DF8&/W;V2/W^D1

2&.
Thus, forT*Tg , soft vibrational modes are represent

by both double- and single-well potentials,

V~x!5W@D1x2D2x21x4#. ~6!

Here, the parameterD1 is a random variable characterized b
the probability distributionp1(D1). Because two soft mode
that differ only in the sign ofD1 are equivalent, the distri-
bution is symmetric,p1(D1)5p1(2D1). Assuming Gauss-
ian statistics forD1 , the distribution is characterized by th
second moment,p1(D1)5A2/p^D1

2&1/2exp(2D1
2/^D1

2&). In
the limit Tg˜0, the variance vanisheŝD1

2&˜0, and soft
modes are represented by symmetric double wells o
p1(D1)5d(D1).

Since the parameterD1 describes thermal stress in th
liquid, ^D1

2& follows from thermodynamic considerations. A
temperatureT, soft modes withDV0,T are in either state
with equal probability and thus contribute to the entrop
while contributions from modes withDV0.T are much re-
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duced. Kauzmann argued that the entropy of a glass vani
below some temperatureTK @13#. In the two-level descrip-
tion of supercooled liquids, a thermodynamic state with z
entropy is represented by a collection of soft modes, al
which are single wells. It follows that the asymmetry is lar
for modes withDV0,TK . In linear order inD1 , the asym-
metry is given byDe.WD1Dx05&WD1D2

1/2. The asym-
metry is large forDe;DV0 , or

D1;D2
3/2 ~single/double wells!. ~7!

FromDV0;TK , we haveD2;(TK /W)1/2 and thus arrive at
the estimate^D1

2&;(TK /W)3/2. Buchenau identified the
glass transition temperatureTg with Kauzmann temperatur
TK , and arrived at an explicit expression forp1(D1) using a
different approach@17#. Here, we do not use this identifica
tion and have

p1~D1!50.231S TK

W D 3/4

expF20.169S W

TK
D 3/2

D1
2G . ~8!

This distribution guarantees that the specific entropy is
ponentially small for temperaturesT,TK , in agreement
with the ‘‘Kauzmann paradox.’’

For T.TK , the supercooled liquid probes soft modes re
resented by both single- and double-well potentials. Si
D2.n2/2W, Eq. ~7! gives an upper bound forD1 that de-
pends on the barrier frequency,D1,n3/16W3/2. Conse-
quently, the asymmetry as well has an upper bound that
pends onn, De,Demax;n4 /W. Following Ref.@7#, the level
density is assumed to be flat, i.e.,nSPM(De).nSPM(De
.0) for De,Demax andnSPM(De).0 for De.Demax. The
ratio of the number of asymmetric TLS to the number
symmetric TLS can be writtenk;nSPM(De.0)Demax. We
readily find the level density nSPM(De.0)
;W3/2V2/TK

3/2n4. SinceS;nSPM(De.0)T, we now have,
for the specific entropy,

S~n;T!;
W3/2V2

TK
3/2n4 T, T*Tg . ~9!

In Ref. @21#, we used the soft-potential model to calcula
the density of barrier frequencies,Gu(n2;T)5^d(d2V/dx2

1n2)&, where the average is taken with respect to the co
dinate,x, and the parameters of the soft potential,D1 and
D2 . The temperature dependence arises by assuming
thermal equilibrium distribution for local coordinates,p(x)
;exp@2V(x)/T#. We introduced scaled frequencies and te
peratures,n85n/AW, V85V/AW, andT85T/W, and then
derived exact expressions for the density in the limitW
˜0. We found that the onset of stress in the liquid gove
the frequency and temperature dependence of the den
For high temperatures,T@TK , we found that thermal stres
is negligible and the density obeys Arrhenius temperat
dependence, logGu(n

2;T);2V2n2/T. For low temperatures
T*TK , on the other hand, thermal stress is large and den
follows Zwanzig-Bässler temperature dependenc
logGu(n

2;T);2TK
3/2n4/V2T. A comparison with Eqs.~5! and

~9! shows that Gu(n2;T) depends on the frequency
dependent configurational entropy via an extension of
Adam-Gibbs relation,Gu(n2;T);exp@21/S(n;T)T#. This
es
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role of stress in liquids is supported by findings from a m
lecular dynamics study of a model glass@23#. The authors
found that stress fields are disrupted by thermal excitation
normal liquids above some temperatureTs (Ts.Tg). As the
temperature is lowered, the local structure becomes m
correlated so that long-range stress fields can be suppo
by the disordered state of supercooled liquids belowTs . The
authors propose that thepercolation of such correlated re-
gions then leads to the glass transition.

Equation ~7! defines a frequency cutoff for double
well potentials, nc;TK

1/4. For n.nc soft modes are
double-well potentials, while single wells dominate f
n,nc . Since single wells do not contribute to the co
figurational entropy, the structural relaxation time follow
t21;*nc

` exp@21/S(n;T)T#dn, or in leading order,

logt;
1

S~nc ;T!T
. ~10!

From Eqs.~5! and ~9! we thus find that the appearance
long-range stress fields in the liquid drives the crosso
from Arrhenius behavior for temperatures well above t
transition,T@Tg , to Zwanzig-Ba¨ssler behavior in the vicin-
ity of the glass temperature,T*Tg . We emphasize that we
have not derived this result from first principles, howev
since we have used this temperature dependence to ide
the parts of the soft-potential model and derive their dis
butions.

Elementary excitations are a consequence of
symmetry-broken state of the system@4# and can be identi-
fied by diagonalizing the force matrixK of the many-body
system. For a liquid, a unique reference configuration d
not exist, and the average over many configuration is ta
to find the~normalized! spectrum of the liquid state. Liquid
dynamics is solidlike for times much shorter than the ‘‘Ma
well time’’ @25,26#. Instantaneous normal modes~INM ! have
been used in recent years to describe liquid dynamics
picosecond time scales@27,28#. The success of theorie
based on dynamic properties on~ultra-! short time scales is a
consequence of the elastic resistance to shear stress for
times, which itself stems from the nonzero value of the ze
frequency shear modulus.

The INM spectrum extends to both real and imagina
frequencies. The high-frequency tail of the real lobe ori
nates from two-particle collisions. The frequency and te
perature dependence of the unstable lobe is consistent
Eqs.~5! and~9! for high and low temperatures, respective
with a crossover above the melting temperature@29#. Fur-
thermore, the contribution of double-well modes to the u
stable lobe vanishes at some finite imaginary frequencync

2

,0. While the unstable lobe of the INM density contai
‘‘false barrier’’ modes@30#, the barrier density in the soft
potential model does not. Thus, the striking similarity of t
two densities suggests that instantaneous normal mode
effective in probing ‘‘channels’’ for diffusion.

Since soft vibrational modes describe the mesoscopic
namics that is exhibited, e.g., in the boson peak@10#, Eq.
~10! suggests a connection between structural relaxation
vibrational properties of glass-forming liquids on~ultra-!
short time scales. In Ref.@21#, we identified oscillations
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around the potential minima of soft modes with fastb pro-
cesses in liquids. Equation~10! then gives the relation@31#

logt;
1

^x2&b
, ~11!

which is the basis of much of the work on glass transition
short time scales, particularly in proteins@16#. In proteins,
the minima of soft modes correspond toconformational sub-
states, which were first used to interpret the nonexponen
time dependence of the CO rebinding on myoglobin a
photodissociation@32#.

Excellent candidates for exploring soft modes and
role of fast processes in glassy dynamics are ‘‘bottlenec
and saturation experiments and nonlinear phenomena as
ated with two-level systems@1#. In fact, pure dephasing
has recently been measured in picosecond vibrational e
experiments of myoglobin CO@33#. It shows a power-
law behavior and then becomes thermally activated, 1T2*
5aTa1b exp(2DE/T). A detailed study of such temperatu
dependence will greatly enhance our understanding of re
ation and the nature of low-frequency vibrational excitatio
in glasses.

III. DISCUSSION

Near the glass transition, the heat capacity of a sup
cooled liquid drops to crystallike values. This observati
connects the dramatic increase of relaxation times nearTg to
an underlying equilibrium second-order phase transiti
Adam and Gibbs proposed that thermally activated proce
are entropically driven, logt }1/ST, whereS is the configu-
rational entropy of the liquid. The fraction of configuratio
space accessible to the system, and thus the configurat
entropy, decreases as the temperature is lowered.

The configurational entropy reflects the disordered str
ture of the liquid. It is solidlike at short distances only, wh
translational invariance is destroyed at long distances. A
consequence, the vibrational spectrum is dominated
phonons and soft modes at high and low frequencies, res
tively. Collective modes are characterized by potential en
gies along their many-body coordinates, and the softenin
vibrational modes is described by symmetric double we
The presence of long-range stress in the liquid enters
description via the asymmetry between the local minima
-
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double-well modes, i.e., the linear term in the soft-poten
model.

We have shown that local stress governs the tempera
dependence of the configurational entropy. At high tempe
tures,T@Tg , local stress is negligibly small and a distribu
tion of symmetric double-well modes gives a temperat
independent entropy,S(n);W2/V2n2. Local stress become
large as the temperature is lowered,T*Tg . A distribution of
asymmetric double-well modes then gives an entropy tha
linear in temperature,S(n;T);(W3/2V2/TK

3/2n4)T. The lin-
ear term in the soft-potential model introduces a freque
cutoff for double-well modes,nc;TK

1/4. At temperatures be-
low the glass transition, local stress dominates the ene
scale and soft modes are described by single-well potent
As a consequence, the configurational entropy vanishe
the Kauzmann temperature,S(n;T5TK)50. Generalizing
the Adam-Gibbs ansatz, we have for the relaxation ti
logt;1/S(nc ;T), and find Arrhenius and Zwanzig-Ba¨ssler
temperature behavior of relaxation times at high and l
temperatures, respectively.

We note that the vibrational spectrum reflects solidli
properties of supercooled liquids, while the Adam-Gibbs e
pression emphasizes liquidlike aspects of the glass trans
@16#. We are not first trying to relate liquid- and solidlik
properties of glass-forming liquids. Indeed, the relation b
tween relaxation times in liquids and the mean-square
placements on picosecond time scales, cf. Eq.~11!, had pre-
viously been proposed without reference to the liquid st
@34#. From the heuristic arguments presented in this pa
we speculate that liquidlike and solidlike ‘‘views’’ of the
glass transition are not in conflict with each other, but a
rather related on a fundamental level.

In future papers, we plan to explore in greater detail
ideas outlined here. Of particular interest is the nature
characterization of soft modes and how they are related
TLS. Furthermore, our approach to the glass transition be
some resemblance to the solidlike treatment of superco
liquids and glasses in a recent report by Alexander@35#. The
role of stresses is different in the two approaches, howe
and the underlying physical assumptions must be caref
reexamined.
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@21# U. Zürcher and T. Keyes, Phys. Rev. E55, 6917~1997!.
@22# T. Keyes, J. Chem. Phys.101, 5081~1994!.
@23# S.-P. Chen, T. Egami, and V. Vitek, Phys. Rev. B37, 2440

~1988!.
@24# C. A. Angell, Proc. Natl. Acad. Sci. USA92, 6675~1995!.
@25# J. C. Maxwell, Philos. Mag.157, 49 ~1867!.
@26# J. Frenkel,Kinetic Theory of Liquids~Dover, New York,

1955!.
@27# T. Keyes, J. Phys. Chem.101, 2921~1997!.
@28# R. M. Stratt, Acc. Chem. Phys.28, 201 ~1995!.
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